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Goals Validation Simple Det. Grid Conv. Ind. Zone Model

Motivation

• How will energy extraction/introduction via joule
heating(~J · ~E ) affect the stability of the detonation?

• How will the magnetic Pressure(~J × ~B) evolution affect the
Reaction Zone and detonation stability?
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Goals Validation Simple Det. Grid Conv. Ind. Zone Model

Goals of the Present Study

• In order to understand detonation-magnetic field interactions,
one must first understand the stability criteria of an
unmagnetized, unsupported detonation.

• Explore the nonlinear dynamics involved in detonation stability

I Induction lengths relation to kinetics & dynamics

• Examine the coupling of large and small length scale physics
I Correlating different modes of peak pressure behavior to small

scale phenomena
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Goals Validation Simple Det. Grid Conv. Ind. Zone Model Euler Ideal MHD Kinetics

Numerical Methodology

Inviscid, one-dimensional Euler equations using
multi-step,reversible reaction mechanism:

Qt + F(Q)x = S(Q) (1)

where the vectors represented by Q, F, and S are, respectively,

Q =

 ρs

ρu

Ê

 ,F =

 ρsu
ρu2 + P

(Ê + P)u

 ,S =

 ωs

0∑
s ωse0s

 (2)

where the total mixture density ρ =
∑

s ρs , and the total energy Ê
may be written

Ê = ρ

∫
cv (T )dT +

1

2
ρu2 (3)

Distribution A: For Public Release; Distribution Unlimited



Goals Validation Simple Det. Grid Conv. Ind. Zone Model Euler Ideal MHD Kinetics

Numerical Schemes

• Monoticity Preserving(MP) Schemes (Suresh & Huynh, 1997)
I 5th order spatial discretization was used in conjuction with 3rd

order TVD-Runge-Kutta time integration
I Contact Discontinuities well resolved without the use of

artificial compression methods

• Advection-Diffusion-Reaction Weighted Essential
Non-Oscillatory(ADERWENO) Scheme (Titarev & Toro,
2001)

I 5th order spatial and 3rd order temporal without Runge-Kutta
time integration

I Utilizes Lax-Wendroff procedure and Taylor series expansion of
WENO fluxes for high order in time
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Goals Validation Simple Det. Grid Conv. Ind. Zone Model Euler Ideal MHD Kinetics

Validation Studies

• Euler equation solutions using MP schemes validated for
standard problems:

I Sod’s 1D Shock tube problem
I Lax’s 1D problem, shock tube with velocity field
I Shu-Osher 1D problem, entropy wave-shock interaction
I 1D Blastwave problem, e.g.,
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Goals Validation Simple Det. Grid Conv. Ind. Zone Model Euler Ideal MHD Kinetics

Ideal MHD Conservation Equations

Qt + Fx = 0

Q =


ρs

ρu
B
E

, F =


ρsun

ρuun + P∗n− BBn

unB− uBn

(E + P∗) un − Bn (u · B)


where

Bn = Bxnx + Byny + Bznz , P∗ = P + 1
2‖B‖

2

Validated for standard 1D Brio-Wu Problem, analogous to Sod’s
shock tube:

ρL,PL, uL ρR ,PR , uRBy -By
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1D Brio-Wu validation with ADERWENO
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s ,0.75,-1}

Distribution A: For Public Release; Distribution Unlimited



Goals Validation Simple Det. Grid Conv. Ind. Zone Model Euler Ideal MHD Kinetics

Chemical Kinetics Conservation Equations

Operator-Splitting dQ

dt
= S

where

Q =

 ρs

ρu
E

, S =

 ω̇s

0∑
ω̇se0s


ω̇s =

∑
r

νrskfr

∏
j

[Xj ]
ν′
rj −

∑
r

νrskbr

∏
j

[Xj ]
ν′′
rj

νrk = ν ′′rk − ν ′rk
ν ′′rk : coefficient of kth species in the r th forward reaction
ν ′rk : coefficient of kth species in the r th reverse reaction
[Xs ]: Concentration of sth species
e0s : Internal Energy of formation at 0K
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Kinetics of Hydrogen-Air Mixture:

• The chemistry includes eight reacting species, H2, O2, H, O,
OH, HO2, H2O2, H2O, and the non-reacting diluent N2.

• Thirty eight elementary reactions are used in this mechanism
and the backward rates are computed from equilibrium
constants.

• Convection and Kinetics were operator split
I Point Implicit Euler was used to solve for the kinetics
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Goals Validation Simple Det. Grid Conv. Ind. Zone Model Euler Ideal MHD Kinetics

Induction Delay Time

Reduced H2 −O2 −N2 Reaction Kinetics (9 species, 38 reactions)
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Goals Validation Simple Det. Grid Conv. Ind. Zone Model Euler Ideal MHD Kinetics

Detonation Test Setup

L

30 cm

P = 1 atm
T = 300K

T = 1500 K
P = 40 atm

• Premixed Stoichiometric Mixture of H2−Air

• Closed Ends

• Spark ignited (L = 0.25 cm in the Present Study)

• Dcj ≈ 2054m/s
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Spark Ignited Detonation – Pressure Contour (MP5)
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Spark Alteration (Pspark = 50 atm, L = .25cm), MP5
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Goals Validation Simple Det. Grid Conv. Ind. Zone Model

Typical Peak Pressure vs Time Plot

Grid Resolution: ∆x = 2.5µm
HF- High Frequency, HA- High Amplitude
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Goals Validation Simple Det. Grid Conv. Ind. Zone Model

Time to Re-Explosion

Time of re-explosion(Texp):

• criteria P > 100 atm
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Goals Validation Simple Det. Grid Conv. Ind. Zone Model

Grid Convergence

• Peak Pressure vs Time data relates macroscopic phenomena
to microscopic phenomena

• Spectral content of the High Frequency and High Amplitude
Modes for various grid resolution can be used to determine
convergence

• High Frequency modes were inconsistent as the grid resolution
increased to ∆x ≥ 7.5µm
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Typical Peak Pressure vs Time Plot

Grid Resolution: ∆x = 12.5µm
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Goals Validation Simple Det. Grid Conv. Ind. Zone Model

Spectral Convergence
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Simplified Model
Induction Zone Dynamics

flame
ti

m
e

shock

single period

Induction Zone

¯̀

Entropy Wave
Acoustic Wave

dx

dt

∣∣∣∣
entropy

= u2(x , t) (4)

dx

dt

∣∣∣∣
acoustic

= c(x , t)− u2(x , t) (5)

where u2(x , t) = |u(x , t)− D(t)| (detonation ref. frame)
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Verify Simple Model

P
p
ea

k

time
a

b

c

Acoustic Entropy

T =
¯̀

ca + ua − D̄a→b
+

`

ub − D̄b→c
(6)

f = T −1, frequency

Assumptions for zeroth order approximation:

• D̄ = 1
T
∫

D(t)dt

• γ ≈ 1.28

• T, P, ρ, u → F (x , t), ∂F (x ,t)
∂t ' 0 & ∂F (x ,t)

∂x ' 0
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Verify Simple Model
High Frequency Mode
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Verify Simple Model
High Amplitude Mode
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Conclusions

• Same fundamental dynamics for High Frequency and High
Amplitude Modes

• The location of the hot spot, whether within the flame or
reaction zone, plays a key role in pressure oscillations.

I ‘hot spot’ inhibits progress of flame toward shock by
pre-igniting fluid, thus suppressing the peak amplitude of
pressure

• HF Mode: “hotspot” well resolved within induction zone,
leading to small fluctuations in Pressure

• HA Mode: fluctuations are within flame, allowing for more
energy release (via Swacer effect)
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Future Work

• Conduct similar test with a seeded species of low ionization
energy and direct initiation (Hydrocarbon fuel)

I Observe how ionization processes effect the induction region
and large scale phenomena

• Apply B-field of varying strength
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Backup
MHD Effects

Additional Physics added in MHD

~F = ~J × ~B Lorentz Force

Q = ~J · ~E Joule Heating
(7)

Questions:

• How will energy extraction/introduction via joule heating
effect the stability of the detonation?

• How will the magnetic Pressure evolution effect the Reaction
Zone & detonation stability?
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